Projects/science - world/may 26, 2020

Can we improve the quality of compostable, plant-based plastics?

Enter pledge amount

USD
$15.00
$35.00
$50.00
$100.00

From

Donate anonymously

Your card wont`t be charged unless the project is fully funded.

About This Project

Compostable plastics, such as polylactic acid (PLA) cannot withstand high temperatures compared to traditional plastics. As such, PLA is not used for things such as disposable coffee cups, straws, plates, etc. Combining inorganic compounds with PLA should improve its physical properties, possibly improving heat resistance and overall strength. With this experiment, I will more thoroughly test this new material to establish if it can be a new, greener plastic option for manufacturers.

What is the context of this research?

Compostable plastics, such as polylactic acid (PLA) cannot withstand high temperatures compared to traditional plastics. This limits the range of applications that PLA can be used for- especially for uses such as disposable food storage. By combining organic compounds (PLA) with natural inorganic compounds such as Calcium Hydroxide, I have developed a promising new material, «hi-temp PLA» or «hPLA». This new material has a higher Glass Transition Temperature point- so it retains its form under higher heat than PLA. This opens up applications for use as food containers and other disposable products. This hPLA material may allow plastics manufacturers to use greener, biodegradable plastics in a variety of applications that were previously off limits.

What is the significance of this project?

More than 300 million tons of plastic are produced per year, and that number is increasing. The same research indicates only 14% of that plastic is recycled- the rest is left to choke our planet’s landfills and oceans.

The hope is that hPLA becomes a viable, «greener» alternative to more commonly used plastics that are regularly thrown away. Single-use plastic for packaging represents close to 40% of the total plastic produced. Items such as hot cups, utensils, and microwavable containers are prime applications for hPLA as a replacement for non-compostable plastic.

Beyond plastics, one hopes that this novel method of combining organic and inorganic chemistry can lead to a wide variety of material property manipulation- far beyond the scope of this experiment.

What are the goals of the project?

The goal of this project is to collect rigorous data regarding this new material. I will work with a commercial lab to conduct Differential Scanning Calorimetry. This test will provide data on hPLA’s heat resistance, giving us a better understanding of how much heat it can take before losing shape and melting. We will also conduct Tensile Strength analysis to determine the physical strength and flexibility of the material, giving us more data about its brittleness and overall usability. The intent of this data collection is to better understand this new material, and to assess its viability to be used as a «green» alternative for plastic products that encounter higher temperatures — typically the domain of plastics that are not

Distribution of money

These tests should determine the viability of this «high temp» PLA material as a medium for food containers and other products. These tests will establish the material’s glass transition temperature, melting temperature, tensile modulus, and a few other key physical properties. I have conducted some basic tests with my home lab during the development of this material- but this funding would be used to enlist the help of a more fully equipped facility to collect this data.

Deadline